La fonction polynomiale de degré 2 et la fonction racine carrée

RÉVISION

Page 76

Réactivation 1

a. 1) i)
$$\sqrt{2}$$
 ii) $\sqrt[3]{5^2}$

iii)
$$\sqrt[4]{6^3}$$

iv)
$$\sqrt[n]{b^m}$$

2)
$$(-5)^{1,5} = \sqrt{(-5)^3} = \sqrt{-125}$$

La racine carrée d'un nombre négatif n'existe pas dans l'ensemble des nombres réels.

b. 1) i)
$$\sqrt{15}$$

iv)
$$\sqrt{c \times d}$$

2)
$$\sqrt{3} \times \sqrt[3]{5} = 3^{\frac{1}{2}} \times 5^{\frac{1}{3}}$$

L'exposant associé à chacune des bases du produit n'est pas le même.

c. 1) i)
$$\sqrt{2}$$

ii)
$$\sqrt{3}$$

iv)
$$\sqrt[3]{\frac{g}{h}}$$

$$2) \ \frac{\sqrt[3]{7}}{\sqrt[9]{11}} = \frac{7^{\frac{1}{3}}}{11^{\frac{1}{3}}}$$

L'exposant associé à chacune des bases du quotient n'est pas le même.

Réactivation 2

Page 77

Page 80

Page 81

a.
$$(6x + y)$$
 m et $(y + 4)$ m.

b.
$$(y^2 + 4y + 4)$$
 m²

c. Oui, car l'expression sous la forme factorisée est
$$(y + 2)^2$$
 m².

d.
$$(6xy + 24x - 4) \text{ m}^2$$

e. Oui, car en mettant 2 en évidence, l'expression devient 2(3xy + 12x - 2) m².

Mise à jour

1. a) $\sqrt{21}$

f) $\sqrt{3}v$

b) $\sqrt{6}$ c) $\sqrt{2}$ d) $\sqrt{a\pi}$ e) $x^3\sqrt{x}$ g) $\sqrt{\frac{7}{10}}$ h) $\sqrt{x+3}$ i) \sqrt{y}

e) 27 **f)** 3

2. a) 4

b) 10

c) 2

d) 4

3. a) Non, car $1 \neq 2 \times \sqrt{1} \times \sqrt{1}$. **b)** Non, car $16 \neq 2 \times \sqrt{1} \times \sqrt{8}$. **c)** Oui, car $8 = 2 \times \sqrt{1} \times \sqrt{16}$. **e)** Non, car $25 \neq 2 \times \sqrt{9} \times \sqrt{16}$. **f)** Oui, car $36 = 2 \times \sqrt{144} \times \sqrt{225}$.

g) Non, car $0.54 \neq 2 \times \sqrt{0.36} \times \sqrt{0.81}$. **h)** Oui, car $\frac{6}{5} = 2 \times \sqrt{1} \times \sqrt{\frac{9}{25}}$. **i)** Non, car $\frac{15}{7} = 2 \times \sqrt{\frac{1}{4}} \times \sqrt{\frac{16}{49}}$

4. a) 4bx(2x - 1) **b)** (g + 2)(g - 4) **c)** $x^2y^2(8y - 9x)^2$ **d)** $(y - 9)^2$ **e)** $(2x + 3)^2$ **f)** $(5b^2 - 3)(b - 4)$ **g)** $(0,6u + 0,5w)^2$ **h)** (0,6x - 0,8y)(0,6x + 0,8y)

i) $(z-1)(8y^2-3x^2)$ j) $(3x+y)^2$

Mise à jour (suite)

5. a) $A = b \times h$

b) $A = c^2$

$$5ab - 15a + 14b - 42 = (5a + 14)(b - 3)$$

 $b = 5a + 14$ et $b = b - 3$.

$$36m^2 + 60m + 25 = (6m + 5)^2$$

$$c = 6m + 5$$

38

c)
$$A = \frac{D \times d}{2}$$

 $\frac{16a^2 - 25}{2} = \frac{(4a + 5)(4a - 5)}{2}$
 $D = 4a + 5$ et $d = 4a - 5$.

6. a) 1)
$$58y + 7$$
 et $22x + 9$.

b)
$$1792xy + 576y + 196x + 63$$

d)
$$A = \frac{\text{P\'{e}rim\`e}tre \times \text{apoth\`e}me}{2}$$

$$7z^2 - 14az - 8a + 4z = \frac{5(1,4z + 0,8) \times \text{apoth\`e}me}{2}$$
apoth\`eme = $2z - 4a$

2)
$$64y + 7$$
 et $28x + 9$.

c)
$$164xy + 18y + 14x$$

Mise à jour (suite)

7. a)
$$(6x + 9)$$
 cm

b)
$$(6x + 3)^2$$
 cm²

c)
$$((6x + 9)^2 - (6x + 3)^2)$$
 cm²

d)
$$(6x + 3)^2 = 225$$

 $6x + 3 = 15$
 $x = 2$

Carré rouge :
$$6(2) + 3 = 15$$
 cm.
Carré jaune : $6(2) + 9 = 21$ cm.
Carré bleu : $8(2) + 9 = 25$ cm.

- **8.** a) 1) La double mise en évidence.
 - **b)** \bigcirc (2a + 5) et (5b + 1).
- 2) La différence de deux carrés.
- (2) $(10xy^2 6x^2y)$ et $(10xy^2 + 6x^2y)$.
- 3) Le trinôme carré parfait.
- (3) (4v 5) et (4v 5).

Mise à jour (suite)

Page 83

Page 82

9. a) Oui, car l'expression qui représente l'aire totale de la table est un trinôme carré parfait.

b) 1)
$$(6,25x^2 + 7,5x + 2,25)$$
 dm²

2)
$$\sqrt{128x^2 + 96x + 18}$$
 dm

3)
$$(39x^2 + 18x) \text{ dm}^2$$

c)
$$(2.5x + 1.5)^2 = 64$$

 $2.5x + 1.5 = 8$
 $x = 2.6$

Comme la mesure d'un côté de la table est de (8x + 3) dm et que x = 2,6, alors 8(2,6) + 3 = 23,8 dm. Les dimensions de ce dessus de table sont donc de 23,8 dm sur 23,8 dm.

10. a) Prisme droit à base rectangulaire : $\sqrt{105}$ cm³.

Cylindre circulaire droit : $13\pi x\sqrt{17x}$ cm³.

b) Prisme droit à base rectangulaire : $2(\sqrt{15} + \sqrt{21})$ cm². Cylindre circulaire droit : $2\pi x \sqrt{221}$ cm².

c) Prisme droit à base rectangulaire : $2(\sqrt{15} + \sqrt{21} + \sqrt{35})$ cm². Cylindre circulaire droit : $(2\pi x\sqrt{221} + 26\pi x)$ cm².

La fonction polynomiale de degré 2

Page 84 **Problème**

La règle $H = -5(t-7)^2 + 247$ représente la hauteur H (en m) en fonction du temps t (en s). Le maximum correspond à l'ordonnée du point associé au sommet de la courbe, soit (7, 247). Le projectile atteint donc une hauteur maximale de 247 m à 7 s.

Page 85 Activité 1

- **a.** La baleine a atteint une profondeur maximale de 800 m.
- **b.** Elle atteint la profondeur maximale à 30 min.
- **c.** Non, car $30 \neq 2 \times \sqrt{-0.5} \times \sqrt{350}$.
- **d.** Oui, car les opérations algébriques effectuées aux étapes ② et ③ n'ont pas modifié la valeur de l'expression.
- **e.** $60 = 2 \times \sqrt{1} \times \sqrt{900}$

- **f.** 1) Par la mise en évidence de -0,5.
 - 2) Par la soustraction -900 700 = -1600.
 - 3) En factorisant le trinôme carré parfait $x^2 60x + 900$ obtenu et en effectuant le produit de -0,5 par -1600.
- **g. 1)** 30

- 2) 800
- h. Les valeurs trouvées en g correspondent aux coordonnées du sommet de la courbe.
- **j.** 1) Oui, car $c = ah^2 + k$; en isolant k dans cette équation, on obtient $k = c ah^2$.
 - $= c a\left(-\frac{b}{2a}\right)^{2}$ $= c a\left(\frac{b^{2}}{4a^{2}}\right)^{2}$ $= c \frac{b^{2}}{4a}$ $= \frac{4ac b^{2}}{4a}$
- **k.** 1) i) -0,5

iii) 350

- **2)** $-\frac{30}{2(-0.5)} = 30$ et $\frac{4(-0.5)(350) (30)^2}{4(-0.5)} = 800$
- 3) Les valeurs obtenues correspondent aux coordonnées du sommet de la courbe.

Technomath

Page 87

- a. Paramètre a: Y1:2; Y2:2; Y3:-2. Paramètre h: Y1:0; Y2:6; Y3:-4. Paramètre k: Y1:0; Y2:-4; Y3:5.
- **b.** Les coordonnées du sommet sont (h, k).
- **c.** 1) Le sommet de la courbe est situé à la droite de l'axe des ordonnées.
 - 2) Le sommet de la courbe est situé à la gauche de l'axe des ordonnées.
 - 3) Le sommet de la courbe est situé au-dessus de l'axe des abscisses.
 - 4) Le sommet de la courbe est situé au-dessous de l'axe des abscisses.
 - 5) Le sommet de la courbe est situé à l'origine du plan cartésien.

Mise au point 2.1

- **1. a)** (4, 9)

- **d)** (3, 3)
- **e)** (5, 6)

- **f)** (2,5, 0,5)
- **b)** (-7, -12) **c)** (3, 3) **g)** (0, -4) **h)** $\left(\frac{2}{3}, -\frac{19}{3}\right)$
- i) (-1, 4)
- **2.** a) 1) Domaine: \mathbb{R} ; codomaine: $]-\infty$, 4].
- **3)** Maximum : 4.

- **4)** Croissante sur $]-\infty$, 1]; décroissante sur $[1, +\infty[$.

- **b) 1)** Domaine: \mathbb{R} ; codomaine: $[-4, +\infty[$.
- **2)** 0
- **3)** Minimum : -4.
- **4)** Croissante sur $[-2, +\infty[$; décroissante sur $]-\infty, -2]$.
 - **2)** 3
- **3)** Minimum: 2.

- c) 1) Domaine: \mathbb{R} ; codomaine: $[2, +\infty[$. **4)** Croissante sur $[4, +\infty[$; décroissante sur $]-\infty$, 4].

- 3) Minimum: 0.
- **d) 1)** Domaine: \mathbb{R} ; codomaine: $[0, +\infty[$. **4)** Croissante sur $[-2, +\infty[$; décroissante sur $]-\infty, -2]$.

- **3. a)** 16
- **c)** 8*x*
- **f)** 1,44

- **4. a)** (x-4)(x+2)
- **b)** (x + 4)(x + 6)
- **e)** 6*x* c) (x-6)(x-2)

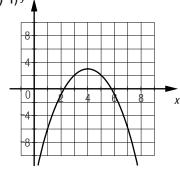
- **d)** 3(x-1)(x+3)
- **e)** -2(x-0,1)(x-0,9)
- **f)** 4(x-5)(x+3)

- **g)** (x 10)(x + 1)
- **h)** (x 2.5)(x + 1.5)
- i) (x-1)(x+1.75)

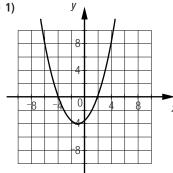
Mise au point 2.1 (suite)

Page 92

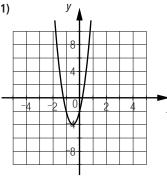
5. a) 1) y

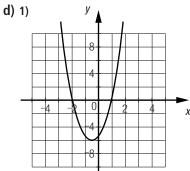


b) 1)

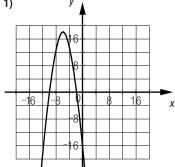


c) 1)

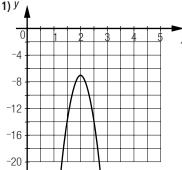




e) 1)



f) 1) y



2)
$$x = 2$$

2)
$$x = -2$$

2)
$$x = 5$$

2)
$$x = 4$$

2)
$$x = -1$$

2)
$$x = -2$$

7. a)
$$y = 2(x-3)^2 - 2$$
 b) $y = -(x-2)^2 + 4$

$$y = -(x-2)^2 + 4$$

c)
$$v = 0.24(x + 5)^2 - 1$$
 d) $v = -0.5(x + 2)^2 + 8$

d)
$$y = -0.5(y \pm 2)^2 \pm$$

Mise au point 2.1 (suite)

8. a)
$$y = 2x^2 - 12x + 23$$

d)
$$y = \frac{2}{3}x^2 - 12x + 54$$

b)
$$y = 0.25x^2 + 2x + 11$$

c)
$$y = -8x^2 + 16x - 12$$

d)
$$y = \frac{2}{3}x^2 - 12x + 54$$

e)
$$y = -4x^2 + 2x - 0.65$$

f)
$$y = 10x^2 - 300x + 2262$$

9. a)
$$y = 4(x - 2.5)^2 - 10$$

b)
$$y = (x - 8)^2 - 47$$

$$1) y = 10x^2 - 300x + 2202$$

d)
$$y = (x - 5)^2 - 15$$

e)
$$v = (x - 5)^2 - 1$$

c)
$$y = 3(x + 0.5)^2 + 4.25$$

10. a)
$$y = (x - 1)(x + 5)$$

b)
$$y = -2(x + 1)(x - 5)$$

f)
$$y = 2(x - 4)^2 - 35$$

d)
$$y = -x(x + 5)$$

e)
$$y = 6x(x + 2)$$

c)
$$y = -(x + 3)(x - 2)$$

f) v = 4(x - 2)(x + 0.75)

12. a)
$$y = -(x + 2)^2 + 7$$

b)
$$y = 4(x - 3)^2 - 2$$

c)
$$y = -3(x + 7)^2 - 5$$

13. a)
$$y = \frac{5}{9}(x-2)^2$$

b)
$$y = -\frac{7}{98}(x-7)^2 + 3.5$$

c)
$$y = (x - 1)^2 - 9$$

Mise au point 2.1 (suite)

Page 94

14. a) 1)
$$(f + g)(x) = 2(x - 3)^2 - 8 + x^2 + 3x - 4$$

= $2(x^2 - 6x + 9) - 8 + x^2 + 3x - 4$
= $2x^2 - 12x + 18 - 8 + x^2 + 3x - 4$
= $3x^2 - 9x + 6$

2)
$$(f-g)(x) = 2(x-3)^2 - 8 - (x^2 + 3x - 4)$$

= $2(x^2 - 6x + 9) - 8 - x^2 - 3x + 4$
= $2x^2 - 12x + 18 - 8 - x^2 - 3x + 4$
= $x^2 - 15x + 14$

- **b) 1)** f + g: (1,5,-0,75); f g: (7,5,-42,25)
 - **2)** $f + g: [-0.75, +\infty[; f g: [-42.25, +\infty[$
 - 3) f + g: positif sur $]-\infty$, 1] \cup [2, $+\infty$ [; négatif sur [1, 2].
 - f-g: positif sur $]-\infty$, 1] \cup [14, $+\infty$ [; négatif sur [1, 14].
 - **4)** f + g: croissante sur [1,5, $+\infty$ [; décroissante sur] $-\infty$, 1,5].
 - f-g: croissante sur [7,5, $+\infty$]; décroissante sur] $-\infty$, 7,5].
- **15.** La règle de la fonction associée à la courbe en orange est $y = 0.5(x 2)^2 + 3$.
 - La règle de la fonction associée à la courbe en vert est $y = 0.5(x 8)^2 + 1$.

Les paramètres a des fonctions ont la même valeur. L'énoncé ① est exact, car la courbe en vert est obtenue par une translation de la courbe en orange.

- **16. a)** La règle de la fonction associée au lancer du poids est $y = -1,3(x-2)^2 + 7$. La règle de la fonction associée au lancer du javelot est $y = -1,12(x-2,5)^2 + 9$.
 - **b)** 1) $y = -1.3(0 2)^2 + 7$ = -1.3 × 4 + 7 = 1.8

2) $y = -1,12(0 - 2,5)^2 + 9$ = -1,12 × 6,25 + 9

Le poids se trouve à une hauteur de 1,8 m.

Le javelot se trouve à une hauteur de 2 m.

- **c)** 1) Le poids atteint une hauteur maximale de 7 m.
- 2) Le javelot atteint une hauteur maximale de 9 m.

Mise au point 2.1 (suite)

Page 95

- **17.** a) La hauteur de la balle augmente sur les intervalles de temps [0, 0,3] s et [0,6, 0,8] s, et elle diminue sur les intervalles de temps [0,3, 0,6] s et [0,8, 1] s.
 - **b)** La règle de la fonction associée au 1^{er} rebond est $y = -100(x 0.3)^2 + 9$. La règle de la fonction associée au 2^e rebond est $y = -100(x 0.8)^2 + 4$.
 - c) 1) $y = -100(0,15 0,3)^2 + 9$ = $-100 \times 0,0225 + 9$ = 6,75
- 2) $y = -100(0.55 0.3)^2 + 9$ = $-100 \times 0.0625 + 9$ = 2.75
- 3) $y = -100(0.85 0.8)^2 + 4$ = -100 × 0.0025 + 4 = 3.75

La hauteur de la balle est de 6,75 mm.

- La hauteur de la balle est de 2,75 mm.
- La hauteur de la balle est de 3,75 mm.
- 18. a) D'après la table de valeurs, l'avion a touché le sol 40 s après le début de la manœuvre.
 - **b)** La descente a duré 40 s.
 - c) La règle de la fonction associée à cette situation est $y = 0.05(x 40)^2$, où y est la distance (en m) entre les roues de l'avion et le sol et x, le temps écoulé (en s) depuis le début de la manœuvre.

$$y = 0.05(90 - 40)^2$$

= 125

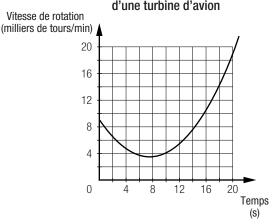
Les roues de l'avion se trouvent à 125 m du sol.

Mise au point 2.1 (suite)

- **19.** a) Il faut factoriser l'expression $0.5x^2 + 4x 4.5$.
 - 0.5(x-1)(x+9). Cette expression correspond à la formule du calcul de l'aire d'un trapèze.
 - 1) La hauteur est de (x 1) dm.
 - 2) La grande base mesure (x + 4) dm.
 - **b)** Le périmètre de cet instrument correspond à environ $16 + 5 + 2(8,14) \approx 37,28$ dm.

20. a)

Essai de rotation d'une turbine d'avion



b)
$$v = 0.1(0)^2 - 1.5(0) + 9$$

= 9

La vitesse de rotation est de 9000 tours/min.

c)
$$v = 0.1t^2 - 1.5t + 9$$

= 0.1($t^2 - 15t + 90$)
= 0.1($t^2 - 15t + 56.25 - 56.25 + 90$)
= 0.1($t - 7.5$)² + 3.375

Les coordonnées du sommet de la courbe sont (7,5, 3,375). La vitesse de rotation diminue donc pendant 7,5 s.

d) Les coordonnées du sommet de la courbe sont (7,5, 3,375). La vitesse de rotation minimale est donc de 3375 tours/min.

21.
$$2\pi(x^2 + 2x - 3) = 2\pi(x - 1)(x + 3)$$

- a) L'expression algébrique qui correspond à la hauteur du contenant peut être x-1 ou x+3.
- **b)** L'expression algébrique qui correspond au rayon de la base du contenant peut être x-1 ou x+3.

SECTION

Problème

2.2

La résolution d'équations et d'inéquations du second degré

Le sommet de la parabole a pour coordonnées (3, k). La règle est de la forme $y = a(x - 3)^2 + k$ et a < 0 d'après l'orientation de la courbe.

À l'aide des couples (0, 0) et (1, 130), on trouve :

$$0 = a(0 - 3)^2 + k$$

$$0 = 9a + k$$

$$k = -9a$$

$$130 = a(1-3)^2 + k$$

$$130 = 4a + k$$

$$k = 130 - 4a$$

On a donc:

$$-9a = 130 - 4a$$

$$-130 = 5a$$

$$a = -26$$

On trouve:

$$k = -9(-26) = 234$$

La règle qui correspond à cette situation est donc $y = -26(x - 3)^2 + 234$, où y est la température de l'alliage (en °C) et x, le temps (en min). La température maximale atteinte par l'alliage est donc de 234 °C, ce qui est inférieur à la température recommandée par la norme de qualité. La soudure respecte donc la norme.

Activité 1 Page 98

 ${f a.}$ La résolution de cette équation permet de déterminer les zéros de la fonction f.

b. Oui, car chacun des membres de l'équation a été divisé par -1.

c. (x-15)(x-2) = 0x-15 = 0 x-2 = 0

Les valeurs de x qui vérifient l'équation sont 2 et 15.

d. Les valeurs trouvées correspondent aux moments où la bombe volcanique se trouve à une altitude de 0 m.

e.
$$f(x) = -(x - 15)(x - 2)$$

= $-(x^2 - 17x + 30)$
= $-x^2 + 17x - 30$

- f. 1) La résolution de cette éguation permet de déterminer les moments où la bombe volcanique se trouve à une altitude de 36 m.
 - 2) La résolution de cette inéquation permet de déterminer les moments où la bombe volcanique se trouve à une altitude supérieure à 36 m.

Page 99 Activité 1 (suite)

- g. Plusieurs réponses possibles. Exemples :
 - 1) Les solutions sont 6 et 11.
- 2) L'ensemble-solution est [6, 11[.

h.
$$x = h + \sqrt{\frac{k}{a}}$$
 et $x = h - \sqrt{\frac{k}{a}}$
 $= -\frac{b}{2a} + \sqrt{\frac{4ac - b^2}{4a}}$ $= -\frac{b}{2a} + \sqrt{\frac{4ac - b^2}{4a^2}}$ $= -\frac{b}{2a} + \sqrt{\frac{4ac - b^2}{4a^2}}$ $= -\frac{b}{2a} + \frac{\sqrt{b^2 - 4ac}}{2a}$ $= -\frac{b}{2a} - \frac{\sqrt{b^2 - 4ac}}{2a}$ $= -\frac{b}{2a} - \frac{\sqrt{b^2 - 4ac}}{2a}$ $= -\frac{b}{2a} - \frac{\sqrt{b^2 - 4ac}}{2a}$

- i. Oui, car la 2^e équation a été obtenue en soustrayant 36 de chacun des membres de la 1^{re} équation.
- **i.** 1) La valeur de a est -1.
- **2)** La valeur de b est 17.
- 3) La valeur de c est -66.

k.
$$x = 6$$
 et $x = 11$.

I.
$$x = \frac{-17 \pm \sqrt{17^2 - 4(-1)(-66)}}{2(-1)}$$

= $\frac{-17 \pm 5}{-2}$

$$x = 6$$
 et $x = 11$.

L'altitude de la bombe volcanique est de 36 m à 6 s et à 11 s.

m. L'altitude de la bombe volcanique est supérieure à 36 m pour l'intervalle]6, 11[s.

Page 100 Activité 2

- a. Recherche de la règle à l'aide des coordonnées du sommet et d'un autre point. Substituer les coordonnées connues dans l'équation : $3 = a(16 - 6)^2 + 2 \Rightarrow a = 0,01$. L'équation de la courbe frontière est donc $y = 0.01(x - 6)^2 + 2$.
- **b.** $y \le 0.01(x-6)^2 + 2$
- c. 1) La région colorée est située au-dessous de la courbe frontière et le symbole d'inéquation est ≤.
 - 2) La courbe frontière correspond à un trait plein, d'où le symbole plus petit ou égal.
- **d. 1)** Oui.

2) Oui.

3) Non.

e. 1) Oui.

2) Non.

- **3)** Non.
- **f.** 1) Le taux d'inflation peut être de 1,5 % pour les 20 prochaines années.
 - 2) Le taux d'inflation peut être de 3 % de 16 ans à 20 ans.
 - 3) Le taux d'inflation peut être de 2,25 % au cours de la première année et de 11 ans à 20 ans.

Page 101 **Technomath**

a. 1)
$$y \ge -0,1(x + 12)^2 + 9$$

2)
$$y \le -0.3(x-8)^2 + 19$$

b. 1)
$$-7 = -0.1(-10 + 12)^2 + 9$$
 2) $6 = -0.3(7 - 8)^2 + 19$ $-7 = -0.1(-2)^2 + 9$ $6 = -0.3(-1)^2 + 19$

2)
$$6 = -0.3(7 - 8)^2 + 19$$

 $6 = -0.3(-1)^2 + 19$
 $6 = -0.3 + 19$

$$-7 = -0,1(-2)^2 + 9$$

$$6 = -0.3(-1)^2 + 19$$

$$-7 = -0.4 + 9$$

$$6 = -0.3 + 19$$

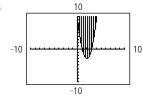
$$-7 \ge 8.6$$
, ce qui est faux.

$$6 \le 18,7$$
, ce qui est vrai.

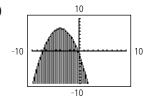
c. 1) Plusieurs réponses possibles. Exemple : (-20, -20)

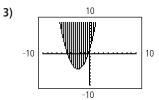
2) Plusieurs réponses possibles. Exemple : (10, 30)

d. 1)



2)





Mise au point 2.2

Page 104

- **1. a) 1)** -4 et 2.
- 2) Positif sur $]-\infty$, $-4] \cup [2, +\infty[$; négatif sur [-4, 2].
- **b) 1)** 1 et 3.
- 2) Positif sur [1, 3]; négatif sur $]-\infty$, $1] \cup [3, +\infty[$.
- **c) 1)** -1
- 2) Positif sur \mathbb{R} ; négatif sur $\{-1\}$.
- **d) 1)** -6 et 4.
- 2) Positif sur [-6, 4]; négatif sur $]-\infty, -6] \cup [4, +\infty[$.
- **2. a) 1)** -4 et 1.
- 2) Positif sur $]-\infty$, $-4] \cup [1, +\infty[$; négatif sur [-4, 1].
- **b) 1)** -2,5 et 1.
- 2) Positif sur $]-\infty$, $-2,5] \cup [1, +\infty[$; négatif sur [-2,5, 1].
- c) 1) Aucun zéro.
- 2) Positif sur \mathbb{R} .
- d) 1) Aucun zéro.
- 2) Négatif sur \mathbb{R} .
- **e) 1)** 1 et 9.
- 2) Positif sur [1, 9]; négatif sur $]-\infty$, $1] \cup [9, +\infty[$.
- **f) 1)** -9 et -5.
- 2) Positif sur [-9, -5]; négatif sur $]-\infty, -9] \cup [-5, +\infty[$.
- **q) 1)** 2
- 2) Positif sur \mathbb{R} ; négatif sur $\{2\}$.
- **h) 1)** 0,5 et 5,5.
- 2) Positif sur $]-\infty$, 0,5] \cup [5,5, $+\infty$ [; négatif sur [0,5, 5,5].
- i) 1) -2 et 0.
- 2) Positif sur [-2, 0]; négatif sur $]-\infty, -2] \cup [0, +\infty[$.
- **3. a)** 1 et 3.

b)]1, 3[

c)]-∞,1[∪]3, +∞[

Mise au point 2.2 (suite)

Page 105

- 4. a) Aucun zéro.
- **b)** Un zéro.
- c) Deux zéros.
- d) Deux zéros.
- e) Deux zéros.
- f) Aucun zéro.

6. a) 1) Deux zéros.

2) y = -(x-2)(x-8)

5. A 1, B 6, C 7, D 4, E 5, F 3, G 8, H 2

- **b) 1)** Deux zéros.
- 2) y = 0.5(x 2)(x + 4)

- **c)** 1) Deux zéros. 2) y = 4(x + 1.5)(x 0.5)
- d) 1) Aucun zéro.
- 2) Impossible.

- e) 1) Deux zéros.
- 2) y = 2(x 1)(x + 2)
- f) 1) Aucun zéro.
- 2) Impossible.

- **7.** a) 1) 0 et $-\frac{3}{4}$.
- **2)** 0 et $\frac{7}{5}$.
- **3)** 0 et 7.

b) Les zéros d'une fonction polynomiale de degré 2 de la forme $y = ax^2 + bx$ sont 0 et $-\frac{b}{a}$

Mise au point 2.2 (suite)

- **8. a)** 3 et 9.
- **b)** 3 et -7.
- c) Aucun zéro.
- d) Aucun zéro.
- **e)** -4
- f) Aucun zéro.

- **9.** a) x = -5 et x = 9.
- **b)** x = -9 et x = 5.
- **c)** x = 1 et x = 6.

- **d)** x = 0 et $x = \frac{2}{3}$.
- **e)** x = 3 et x = 4.
- **f)** $x \approx -0.28$ et $x \approx 1.61$.

- **g)** x = 3 et x = 6.
- **h)** x = 2 et x = 6.
- i) x = 0.5 et x = 1.

- **j)** $x = -\frac{2}{3}$ et x = 1.
- **k)** x = 1 et x = 2.
- **I)** x = -9 et x = -1.

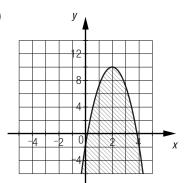
- **10.** a) 1) $y = -3.5(x + 3)^2 + 7$
- 2) $x \approx -4.41$ et $x \approx -1.59$.
- **b) 1)** $y = 0.9(x 1)^2 3$
- 2) $x \approx -0.83$ et $x \approx 2.83$.
- c) 1) $y = 0.05(x 1)^2 14$ **d) 1)** $y = -0.3(x + 10)^2 + 16$
- 2) $x \approx -15.73$ et $x \approx 17.73$. 2) $x \approx -17,30$ et $x \approx -2,70$.

- - 1,5

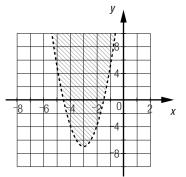
 - 5
- b) •
- d) _
- f) _
- h) . 20

Mise au point 2.2 (suite)

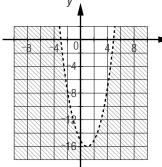
Page 107



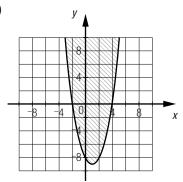
b)



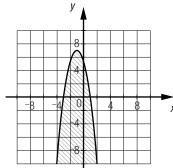
c)



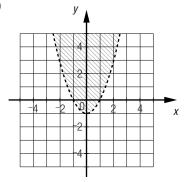
d)



e)



f)



13. a)
$$y \ge 0.48(x-3)^2 - 6$$

d) $y \ge \frac{3}{16}(x+4)^2$

d)
$$y \ge \frac{3}{16}(x+4)^2$$

b)
$$y > -0.5(x - 4)^2 + 18$$

e) $y \ge -2(x + 2)^2 + 8$

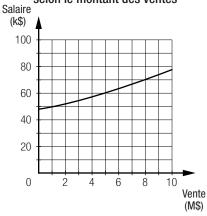
e)
$$y \ge -2(x+2)^2 + 8$$

c)
$$y < -(x-5)^2 + 9$$

f) $y < 0.25x^2 - 6$

f)
$$y < 0.25x^2 - 6$$

14. a) Salaire annuel d'un vendeur selon le montant des ventes



b)
$$s = 0.1(0)^2 + 2(0) + 48$$

= 48

Son salaire de base annuel est de 48 000 \$.

c) 1)
$$57.6 = 0.1v^2 + 2v + 48$$

 $0 = 0.1v^2 + 2v - 9.6$
 $v = \frac{-2 \pm \sqrt{2^2 - 4(0.1)(-9.6)}}{2(0.1)}$
 $= \frac{-2 \pm 2.8}{0.2}$
 $v = 4$ et $v = -24$ (à rejeter).

Le montant annuel des ventes s'élève à 4 millions de dollars.

2)
$$66.9 = 0.1v^2 + 2v + 48$$

 $0 = 0.1v^2 + 2v - 18.9$
 $v = \frac{-2 \pm \sqrt{2^2 - 4(0.1)(-18.9)}}{2(0.1)}$
 $v = \frac{-2 \pm 3.4}{0.2}$
 $v = 7 \text{ et } v = -27 \text{ (à rejeter)}.$

Le montant annuel des ventes s'élève à 7 millions de dollars.

3)
$$72,225 = 0,1v^2 + 2v + 48$$

 $0 = 0,1v^2 + 2v - 24,225$
 $v = \frac{-2 \pm \sqrt{2^2 - 4(0,1)(-24,225)}}{2(0,1)}$
 $v = \frac{-2 \pm 3,7}{0,2}$
 $v = 8,5 \text{ et } v = -28,5 \text{ (à rejeter)}.$

Le montant annuel des ventes s'élève à plus de 8,5 millions de dollars.

Mise au point 2.2 (suite)

Page 108

15. a) La règle $y = (x - 6)^2 + 7$ permet de calculer la vitesse y en fonction du temps x pour la manœuvre ①.

La manœuvre ① a duré 5 s.

b) La règle $y = -0.4(x - 22)^2 + 26$ permet de calculer la vitesse y en fonction du temps x pour la manœuvre ②.

$$\begin{array}{r}
 16 = -0.4(x - 22)^2 + 26 \\
 25 = (x - 22)^2
 \end{array}$$

$$\begin{array}{r}
 5 = x - 22 \\
 x = 27 \\
 17 - 9 = 8
 \end{array}$$

Il s'est écoulé 8 s.

c) 1) ①
$$11 < (x-6)^2 + 7$$

$$4 < (x-6)^2$$

$$2 < x-6$$

$$8 < x$$
②
$$11 < -0.4(x-22)^2 + 26$$

$$37.5 < (x-22)^2$$

$$\sqrt{37.5} < x-22$$

$$\approx 28.12 < x$$

$$28.12 - 8 = 20.12$$

La vitesse a été supérieure à 11 m/s pendant environ 20,12 s.

2) ①
$$19,6 > -0,4(x - 22)^{2} + 26$$

$$16 > (x - 22)^{2}$$

$$4 > x - 22$$

$$26 > x$$

$$0 = -0,4(x - 22)^{2} + 26$$

$$65 = (x - 22)^{2}$$

$$\sqrt{65} = x - 22$$

$$x \approx 30,06$$

Donc v < 19,6 de 0 à 18 s et de 26 à 30,06 s. 18 + 4,06 = 22,06

La vitesse a été inférieure à 19,6 m/s pendant environ 22,06 s.

- d) Cet essai routier a duré environ 30,06 s.
- **16. a) 1)** Terre : $h = -4,9(0)^2 + 20(0) + 1 = 1$. Jupiter : $h = -13(0)^2 + 20(0) + 1 = 1$. Mercure : $h = -1,9(0)^2 + 20(0) + 1 = 1$.

L'objet est lancé d'une hauteur de 1 m sur chacune de ces planètes.

- 2) Sur la Terre, l'objet atteindra de nouveau sa hauteur initiale à environ 4,08 s, sur Jupiter, à environ 1,54 s, et sur Mercure, à environ 10,53 s.
- 3) Sur la Terre, l'objet touchera le sol à environ 4,13 s, sur Jupiter, à environ 1,59 s, et sur Mercure, à environ 10,58 s.

L'objet atteindra une hauteur d'au moins 9 m sur la Terre et sur Mercure.

Mise au point 2.2 (suite)

17. a) Températures minimale et maximale au cours d'une journée

Température (°C)

24

20

16

12

8

4

0

4

8

12

16

16

12

8

Temps
écoulé

b) La région entre les deux courbes correspond aux températures possibles selon l'heure de la journée.

Page 109

c) 1)
$$T_{\text{max}} \le 0.05(x-8)^2 + 12$$

2)
$$T_{\text{min}} \ge 0.04x^2 - 0.56x + 10.96$$

d) 1)
$$T_{\text{max}} = 0.05(12 - 8)^2 + 12$$

= 12.8
 $T_{\text{min}} = 0.04(12)^2 - 0.56(12) + 10.96$
= 10

La température maximale prévue à midi est de 12,8 °C et la température minimale, de 10 °C.

2)
$$T_{\text{max}} = 0.05(18 - 8)^2 + 12$$

= 17
 $T_{\text{min}} = 0.04(18)^2 - 0.56(18) + 10.96$
= 13.84

La température maximale prévue à 18 h est de 17 °C et la température minimale, de 13,84 °C.

e) 1)
$$0.04x^2 - 0.56x + 10.96 > 10$$

 $0.04x^2 - 0.56x + 0.96 > 0$

$$x = \frac{0.56 \pm \sqrt{0.56^2 - 4(0.04)(0.96)}}{2(0.04)}$$

$$= \frac{0.56 \pm 0.4}{0.08}$$

$$x = 2 \text{ et } x = 12.$$

L'ensemble-solution est [0, 2[h ∪]12, 24] h, c'est-à-dire que la température est supérieure à 10 °C pendant environ 14 h.

2)
$$0.05(x-8)^2 + 12 < 17$$

 $0.05(x-8)^2 - 5 < 0$
 $(x-8)^2 < 100$
 $x-8 < 10$
 $x < 18$
 $x > -2$

L'ensemble-solution est [0, 18] h, c'est-à-dire que la température est inférieure à 17 °C pendant environ 18 h.

- **18.** a) La règle de la fonction est $h = -2(t 0.25)^2 + 1.125$, où h est la hauteur (en m) et t, le temps (en s).
 - **b)** Le domaine est [0, 1] s.
 - **c)** Le codomaine est [0, 1,125] m.
 - **d)** Hauteur initiale : $h = -2(0 0.25)^2 + 1.125$

Moitié de la hauteur : $1 \div 2 = 0.5 \text{ m}$

$$0.5 = -2(t - 0.25)^{2} + 1.125$$

$$0.3125 = (t - 0.25)^{2}$$

$$0.56 = t - 0.25$$

 $t = 0.81$

$$-0.56 = t - 0.25$$

 $t = -0.31$ (à rejeter)

La balle atteint la moitié de sa hauteur initiale à environ 0,81 s.

SECTION

La fonction racine carrée

Page 110 **Problème**

Plusieurs réponses possibles. Exemple :

La règle $y = 4\sqrt{x} + 10$ représente la quantité maximale y dissoute en fonction de la température x du solvant.

La règle de la réciproque de cette fonction est la suivante.
$$x = 4\sqrt{v} + 10$$

$$x - 10 = 4\sqrt{y}$$

$$\frac{x-10}{4}=\sqrt{y}$$

$$y = \frac{1}{16}(x - 10)^2$$

Si
$$x = 100$$
, $y = 4\sqrt{100} + 10$
= $4 \times 10 + 10$
= 50

Le nuage de points correspond à une fonction racine carrée. La solubilité de ce sel est environ de 50 g lorsque la température du solvant est de 100 °C.

Page 111 Activité 1

- **a. 1)** On a multiplié par une fraction-unité. Or, l'unité est l'élément neutre de la multiplication.
 - 2) i) $\frac{11\sqrt{3}}{3}$ ii) $\frac{\sqrt{2}}{2}$ iii) $\frac{5\sqrt{7}}{7}$ iv) $\frac{a\sqrt{b}}{b}$

- b. 1) On a multiplié par une fraction-unité. Or, l'unité est l'élément neutre de la multiplication.
 - 2) Effectuer le produit de la somme par la différence de deux mêmes termes revient à effectuer la différence des carrés de ces termes. Le carré de la racine carrée d'un nombre est égal à ce nombre.

3) i)
$$\frac{\sqrt{12} - \sqrt{7}}{5}$$

ii)
$$\sqrt{3} + \sqrt{2}$$

iii)
$$\frac{\sqrt{26} - \sqrt{32}}{-6}$$
 ou $\frac{\sqrt{32} - \sqrt{26}}{6}$.

iv)
$$\frac{\sqrt{11} + \sqrt{5}}{6}$$

$$v) \ \frac{\sqrt{a} - \sqrt{b}}{a - b}$$

vi)
$$\frac{\sqrt{a} + \sqrt{b}}{a - b}$$

Activité 2 Page 112

- a. L'épaisseur minimale d'asphalte est de 90 mm.
- **b.** L'épaisseur d'asphalte nécessaire est de 92 mm.
- c. 1) La valeur de h est 100.
- 2) La valeur de k est 90.
- d. Les valeurs trouvées à la question c correspondent aux coordonnées du sommet de la courbe.

Activité 2 (suite) Page 113

- e. La résolution de cette équation permet de déterminer le DJMA pour une épaisseur d'asphalte de 94 mm.
- f. 1) En soustrayant 90 de chaque membre de l'équation de l'étape ① à l'étape ②. En divisant chaque membre de l'équation par 0,2 de l'étape ② à l'étape ③.

3)
$$n - 100 = 400$$

4)
$$n - 100 = 400$$
 = 500

La résolution de cette équation permet de déterminer que pour une épaisseur d'asphalte de 94 mm, le DJMA est de 500.

- **g.** La résolution de cette inéquation permet de déterminer le DJMA possible pour une épaisseur d'asphalte inférieure ou égale à 96 mm.
- h. 1) De l'étape ① à l'étape ②, on soustrait 90 de chaque membre de l'inéquation. De l'étape ② à l'étape ③, chaque membre de l'équation est divisé par 0,2.
 - 2) i) Non, car il est impossible d'extraire la racine carrée d'un nombre négatif.
- ii) Oui.

iii) Non, car
$$\sqrt{2500} = 50$$
 et $50 > 30$.

3) L'inéquation $\sqrt{n-100} \le 30$ existe si $\sqrt{n-100} \ge 0$.

$$\sqrt{n-100} \ge 0$$

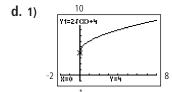
$$n-100 \ge 0$$

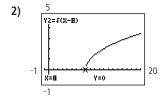
$$n \ge 100$$

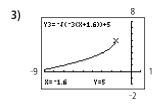
- **4)** 900
- **5)** $n 100 \le 900$
- 6) $n \le 1000$: pour une épaisseur inférieure ou égale à 96 mm, le DJMA doit être inférieur ou égal à 1000.

Technomath Page 114

- **a.** Pour \mathbf{Y}_1 , h=1 et k=2. Pour \mathbf{Y}_2 , h=4 et k=-3. Pour \mathbf{Y}_3 , h=-3 et k=4. Pour \mathbf{Y}_4 , h=-2 et k=-1.
- **b.** Dans le cas d'une fonction dont la règle est de la forme $y = a\sqrt{\pm(x-h)} + k$, les paramètres h et k correspondent respectivement à l'abscisse et l'ordonnée du sommet de la courbe associée à cette fonction.
- **c.** Il faut choisir x = -2.







Page 119

1. a)
$$\frac{2\sqrt{6}}{3}$$

b)
$$-\sqrt{3}$$

c)
$$\sqrt{5} - \sqrt{3}$$

d)
$$\frac{\sqrt{6} + \sqrt{2}}{4}$$

e)
$$\sqrt{5} + \sqrt{3}$$

f)
$$\sqrt{8} - \sqrt{12}$$

$$g) \frac{m\sqrt{n} + n\sqrt{m}}{m - n}$$

d)
$$\frac{\sqrt{6} + \sqrt{2}}{4}$$

h) $\frac{(\sqrt{c} - \sqrt{d})^2}{c - d}$

2.	a	b	h	k
a)	1	1	4	5
b)	-2	3	-2	-3

2)
$$[2, +\infty[$$
 3) Croissante sur $[-6, +\infty[$.

4) Positif sur
$$\mathbb{R}$$
.

b) 1)
$$[-4, +\infty[$$

4. a)
$$4\sqrt{6}$$

b)
$$-5\sqrt{10}$$

c)
$$24\sqrt{3}$$

d)
$$2\sqrt{11b}$$

e)
$$12c\sqrt{5b}$$

e)
$$12c\sqrt{5b}$$
 f) $-22d\sqrt{2d}$

Mise au point 2.3 (suite)

5. a)
$$y = 16\sqrt{x+2} - 1$$

d)
$$y = 7.5\sqrt{-(x-2)} - 4.5$$

b)
$$y = -10\sqrt{-(x-4)} + 5$$

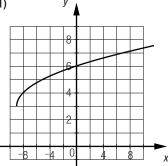
c)
$$y = 6\sqrt{x - 2} + 12$$

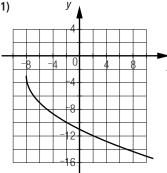
f) $y = 100\sqrt{-(x + 2,25)} + 3$

e)
$$y = -8.75\sqrt{x + 1.76}$$

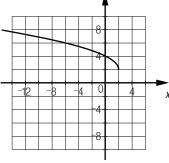
f)
$$y = 100\sqrt{-(x + 2,25)} + 1$$

6. a) 1)

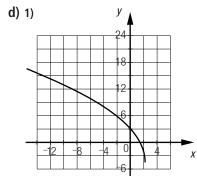


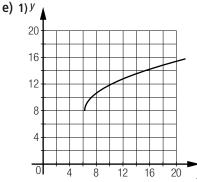


c) 1)

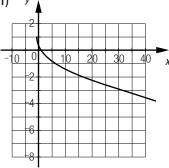


3) (2, 2)





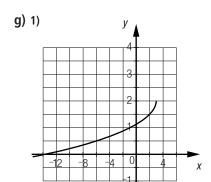
f) 1)

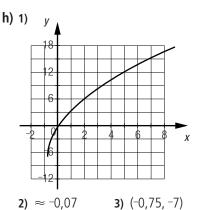


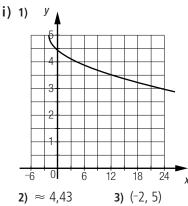
2) 3

2) 0,4

3) (-0,72, 1)







b) 1) 28

c) 1) -5

2) ≈ 1.13

2) Positif sur
$$]-\infty$$
, $-5]$; négatif sur $[-5, 0]$.

3) (3, 2)

f) 1) Aucun zéro. 2) Positif sur
$$\mathbb{R}$$
.

8. a)
$$(f + g)(x) = (3\sqrt{x-4} - 6) + (-2\sqrt{x-4} - 4)$$

= $3\sqrt{x-4} - 2\sqrt{x-4} - 6 - 4$
= $\sqrt{x-4} - 10$

c)
$$(f \times g)(x) = (3\sqrt{x-4} - 6) \times (-2\sqrt{x-4} - 4)$$

= $-6(x-4) - 12\sqrt{x-4} + 12\sqrt{x-4} + 24$
= $-6x + 24 + 24$
= $-6x + 48$

e)
$$x = -2\sqrt{y-4} - 4$$
$$x + 4 = -2\sqrt{y-4}$$
$$\frac{x+4}{-2} = \sqrt{y-4}$$
$$\frac{1}{4}(x+4)^2 = y-4$$
$$g^{-1}(x) = \frac{1}{4}(x+4)^2 + 4$$

9. a)
$$x = 254$$

52

c)
$$x = -16$$

d)
$$x = 2,75$$

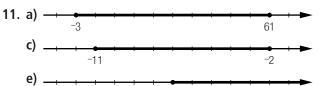
9. a)
$$x = 254$$
 b) \varnothing **c)** $x = -16$ **d)** $x = 2,75$ **e)** \varnothing **f)** $x = -30,25$ **g)** $x = \frac{34}{27}$ **h)** $x = 37,5$ **i)** $x = -95,5$

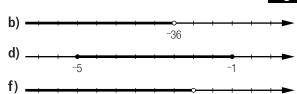
g)
$$x = \frac{34}{27}$$

h)
$$x = 37,5$$

i)
$$x = -9$$

Mise au point 2.3 (suite)





- 3) Minimum.
- 3) Minimum.
- 3) Maximum.
- 3) Maximum.

b)
$$(f - g)(x) = (3\sqrt{x - 4} - 6) - (-2\sqrt{x - 4} - 4)$$

= $3\sqrt{x - 4} + 2\sqrt{x - 4} - 6 + 4$
= $5\sqrt{x - 4} - 2$

d)
$$x = 3\sqrt{y - 4} - 6$$
$$x + 6 = 3\sqrt{y - 4}$$
$$\frac{x + 6}{3} = \sqrt{y - 4}$$
$$\frac{1}{9}(x + 6)^2 = y - 4$$
$$f^{-1}(x) = \frac{1}{9}(x + 6)^2 + 4$$

f)
$$g(h(x)) = -2\sqrt{9(x+4)^2 + 4 - 4} - 4$$

= $-2\sqrt{9(x+4)^2 - 4}$
= $-2 \times 3 \times (x+4) - 4$
= $-6(x+4) - 4$
= $-6x - 28$

Page 120

-37

12. A 3, B 5, C 1, D 6, E 2, F 4

13. a)
$$y = 2\sqrt{x+6} + 2$$

b)
$$y = \sqrt{-(x-8)} - 2$$

13. a)
$$y = 2\sqrt{x+6} + 2$$
 b) $y = \sqrt{-(x-8)} - 2$ c) $y = -2.5\sqrt{x+4} + 4$ d) $y = -3\sqrt{-(x-3)} + 4$

2) $4000 = -1500\sqrt{x} + 10000$ $-6000 = -1500\sqrt{x}$

 $4 = \sqrt{x}$

x = 16

À 16 mois.

d)
$$y = -3\sqrt{-(x-3)} + 4$$

Mise au point 2.3 (suite)

Page 122

14. a) Oui.

b) Oui.

c) Non.

d) Non.

15. a) (A) $y = 2\sqrt{x-4} + 5$; (B) $y = 3\sqrt{-(x+2)} + 6$; (C) $y = 0.25\sqrt{-(x-4)} + 1$; (D) $y = -2.5\sqrt{x+4} - 3$

b) \bigcirc \bigcirc 7,83; \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc -10,91

c) (A) ∅; (B) ∅; (C) ∅; (D) [-4, +∞[

16. A f_2

 $\mathbf{B} f_{\mathbf{A}}$

 $\mathbf{D} f_1$

Mise au point 2.3 (suite)

Page 123

17. a) 10 000\$

b) 1)
$$2000 = -1500\sqrt{x} + 10\ 000$$

 $-8000 = -1500\sqrt{x}$
 $5.\overline{3} = \sqrt{x}$

$$5.3 = \sqrt{x}$$
$$x \approx 28.\overline{4}$$

À environ 28,44 mois.

c)
$$5000 < -1500\sqrt{x} + 10000$$

$$-5000 < -1500\sqrt{x}$$

 $3.\overline{3} > \sqrt{x}$

$$x < 11.\overline{1}$$
 et $x > 0$.

Pendant environ 11.11 mois.

d)
$$0 = -1500\sqrt{x} + 10000$$

$$-10\ 000 = -1500\sqrt{x}$$

$$6,\overline{6} = \sqrt{x}$$

$$x \approx 44.\overline{4}$$

Le zéro est environ 44,44 mois et il représente le moment où la valeur de l'investissement est nulle.

18. a) La règle qui exprime la viscosité du liquide **A** est $V = -0.15\sqrt{t+20} + 1.5$, où V est la viscosité du liquide **A** (en Pa \times s) et t, la température (en °C).

La règle qui exprime la viscosité du liquide **B** est $V = -0.2\sqrt{t+10} + 1.8$, où V est la viscosité du liquide **B** (en Pa \times s) et t, la température (en °C).

b) Résoudre les inéquations suivantes.

$$-0.15\sqrt{t+20}+1.5>0.6$$

La viscosité est supérieure

à 0,6 Pa \times s pour des températures inférieures à 16 °C.

$$0 = -0.15\sqrt{t + 20} + 1.5$$

$$-1.5 = -0.15\sqrt{t + 20}$$

$$10 = \sqrt{t + 20}$$

$$100 = t + 20$$

$$t = 80$$

$$-0.2\sqrt{t+10}+1.8>0.6$$

La viscosité est supérieure

à 0,6 Pa × s pour des températures

inférieures à 26 °C.

$$0 = -0.2\sqrt{t+10} + 1.8$$

$$-1.8 = -0.2\sqrt{t+10}$$

$$9 = \sqrt{t + 10}$$

$$81 = t + 10$$

$$t = 71$$

La viscosité est nulle à 80 °C pour le liquide A et à 71 °C pour le liquide B.

Mise au point 2.3 (suite)

Page 124

19. a) Produit A : $y = \frac{145}{3}\sqrt{x} - 30$, où y représente les profits (en k\$) et x, l'investissement en publicité (en k\$).

Produit B : $y = 51\sqrt{x-3} - 40$, où y représente les profits (en k\$) et x, l'investissement en publicité (en k\$).

b) Produit A:
$$0 = \frac{145}{3}\sqrt{x} - 30$$

$$30 = \frac{3}{145}\sqrt{x}$$

$$\frac{18}{29} = \sqrt{x}$$
$$x \approx 0.385$$

Produit B:
$$0 = 51\sqrt{x - 3} - 40$$

$$0 = 51\sqrt{x - 3} - 40$$
$$40 = 51\sqrt{x - 3}$$

$$\frac{40}{51} = \sqrt{x-3}$$

$$x \approx 3,61$$

L'investissement minimal en publicité est environ de 385\$ pour le produit A et environ de 3615\$ pour le produit B.

c) Produit A:
$$y = \frac{145}{3}\sqrt{13.5} - 30$$

 ≈ 147.59

Produit B:
$$y = 51\sqrt{13,5-3} - 40$$

 $\approx 125,26$

Le produit A génère un profit supérieur à celui qui est généré par le produit B.

d) Produit A :
$$120 < \frac{145}{3}\sqrt{x} - 30$$

 $150 < \frac{145}{3}\sqrt{x}$
 $\frac{90}{29} < \sqrt{x}$

Produit B:
$$120 < 51\sqrt{x-3} - 40$$

 $160 < 51\sqrt{x-3}$
 $\frac{160}{51} < \sqrt{x-3}$
 $x > \approx 12,842$

Il faut que le montant de l'investissement en publicité soit supérieur à environ 9631\$ pour le produit A, et supérieur à environ 12 842 \$ pour le produit B.

20. a) Si
$$t = 1825$$
: (A) $e = 0.08\sqrt{1825 - 100}$

$$e = 0.08\sqrt{1825 - 1}$$

(B)
$$e = 0.1\sqrt{1825 - 200}$$

 ≈ 4.03

©
$$e = 0.06\sqrt{1825 - 60}$$

 ≈ 2.52

Le métal (C).

c)
$$0.65 = 0.13\sqrt{150 - h}$$

$$5 = \sqrt{150 - h}$$

$$25 = 150 - h$$

b) Si
$$e = 2$$
: (A) $2 = 0.08\sqrt{t - 100}$

$$t = 725$$

(B)
$$2 = 0.1\sqrt{t - 200}$$

$$t = 600$$

© 2 =
$$0.06\sqrt{t-60}$$

 $t \approx 1171.11$

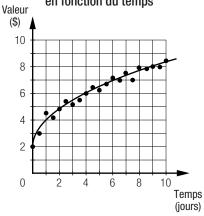
Le métal (C).

Mise au point 2.3 (suite)

Page 125

21. a)

Valeur d'une action en fonction du temps



b) Plusieurs réponses possibles. Exemple :

La règle associée à la courbe tracée en **a**) est $y = 2\sqrt{x} + 2$, où y représente la valeur (en \$) et x, le temps (en jours).

c)
$$y = 2\sqrt{20} + 2$$

 ≈ 10.94

La valeur de l'action sera d'environ 10,94\$.

d)
$$16 > 2\sqrt{x} + 2$$

$$14 > 2\sqrt{x}$$

$$7 > \sqrt{x}$$

La valeur de l'action sera inférieure à 16\$ pendant moins de 49 jours.

22. a)
$$D_{\text{réelle}} = 50\sqrt{x}$$

b) À l'aide du couple (49, 350), on trouve :

$$350 = 120\sqrt{\frac{1}{L} \times 49}$$

$$350 = 120\sqrt{\frac{1}{L}}\sqrt{49}$$

$$350 = 840\sqrt{\frac{1}{L}}$$

$$\frac{\frac{5}{12}}{\frac{25}{144}} = \frac{1}{L}$$

$$\frac{25}{144} = \frac{1}{L}$$

$$L = \frac{144}{25} = 5,76$$

Puisque $D_{\text{bassin}} = 120 \text{ s}$ et que $D_{\text{réelle}} = 350 \text{ s}$ lorsque x = 49 m, on en déduit que la longueur L du modèle réduit est

c) À l'aide du couple (49, 350), on trouve :

$$350 = D_{\text{bassin}} \sqrt{\frac{1}{10} \times 49}$$

$$D_{\rm bassin} \approx 158,11$$

Puisque L = 10 m et que $D_{réalle}$ = 350 s lorsque x = 49 m, on en déduit que la durée de cette manœuvre dans le bassin D_{bassin} est environ de 158 s.

d)
$$D_{\text{réelle}} = 50\sqrt{x}$$

= $50\sqrt{65}$

 $\approx 403,11$

Cette manœuvre dure environ 403,11 s, soit presque 7 min.

RUBRIQUES PARTICULIÈRES

Page 127

Chronique du passé

$$1. \qquad 300 = \frac{500v^2}{200}$$

$$60\ 000 = 500v^2$$

$$120 = v^2$$

$$10,95 \approx v$$

La vitesse d'une voiture est environ de 10,95 m/s.

- **2.** La règle de la fonction associée à la table de valeurs est $E = 3v^2 + 25$.
 - a) L'énergie cinétique est de 457 J.

b) L'énergie cinétique est de 745,75 J.

c) La vitesse est de 23 m/s.

d) La vitesse est de 2,5 m/s.

Le monde du travail

Page 129

1. La règle de la fonction associée à cette situation est $y = -2.5\sqrt{10x} + 100$, où y représente l'efficacité (en %) et x, la distance du trajet (en km).

Résoudre l'équation $25 = -2.5\sqrt{10x} + 100$.

La distance maximale qu'un signal doit parcourir avant d'être réamplifié est de 90 km.

2. a) Résoudre l'équation $0 = 0.001r^2 + 0.04r - 0.6$.

Les solutions sont environ -51,62 (à rejeter) et 11,62.

Le rayon maximal est environ de 11,62 cm.

b) Résoudre l'équation $2,1 = 0,001r^2 + 0,04r - 0,6$. Les solutions sont environ -75,68 (à rejeter) et 35,68.

Le rayon maximal est environ de 35,68 cm.

- 3. La règle de la fonction associée à la table de valeurs « Quantité de fibres de carbone en fonction de la pression exercée » est $y = 0.005(x + 1)^2 + 0.1$, où y représente la quantité de fibres de carbone (en q/cm³) et x, la pression exercée (en MPa). La quantité de fibres de carbone est de 0,42 g/cm³.
 - La règle de la fonction associée à la table de valeurs « Coefficient de glisse en fonction de la quantité de fibres de carbone » est y = 10x + 4.5, où y représente le coefficient de glisse et x, la quantité de fibres de carbone (en q/cm³). Le coefficient de glisse d'une planche à neige est 8,7.

Page 130 Vue d'ensemble

- **1. a)** (5, 8)
- **b)** (-2, -7)
- **c)** (-3, 1)
- **d)** (1,5, 1,75)
- **e)** (-4, 0)

- **f)** (0,5, -12,5)
- **g)** (5, 4)
- **h)** (2, 3) **i)** (-4, 1)

- **2.** a) -4 et -1.
- **b)** \approx -1,42 et \approx -2,58. **c)** \approx -4,54 et \approx 1,54. **d)** -12 et 9.

- **e)** -234
- **f)** Aucun zéro.
- **g)** -27
- **h)** -21 et 15.

- i) Aucun zéro.
- **i)** \approx 1,16 et \approx 3,09. **k)** \approx -0,61
- **I)** -7 et 11.
- **3. a)** $y = (x 1)^2 3$ **b)** $y = 0.5(x 3)^2 + 1$ **c)** $y = -2(x + 4)^2 + 8$

- **d)** $y = -3(x 6)^2 + 27$

- **4. a) 1)** $x \approx -6.73$ et $x \approx -3.27$.
- 2) $]-\infty$, $\approx -6.73[\ \cup\]\approx -3.27$, $+\infty[$ 3) $]\approx -6.73$, $\approx -3.27[$
- **b) 1)** x = -7 et x = -1.
- **2)**]-7, -1[

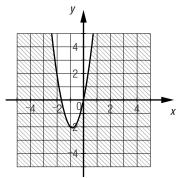
3) $]-\infty, -7[\cup]-1, +\infty[$

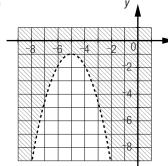
- c) 1) $x \approx -4.94$
- 2) $[-5, \approx -4.94[$
- 3) $] \approx -4.94, +\infty[$

d) 1) x = 7

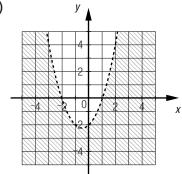
2)]7, +∞[

3) [3, 7[

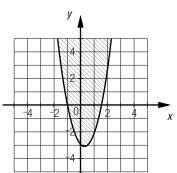




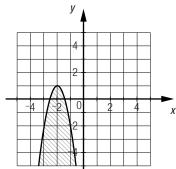
c)



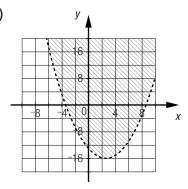
d)



e)



f)



Vue d'ensemble (suite)

- 6. a) 1) ℝ
- **3)** Maximum : 4. **6)** Positif sur [2, 6]; négatif sur $]-\infty$, 2] \cup $[6, +\infty[$.
- **4)** Croissante sur $]-\infty$, 4]; décroissante sur $[4, +\infty[$.

- **5)** 2 et 6.
- **2)** [0,5, +∞[
- **3)** Minimum: 0,5.
- 4) Croissante sur $[-4, +\infty[$.

- **b) 1)** [-4, +∞[

- **5)** Aucun zéro. **6)** Positif sur $[-4, +\infty[$.
- **3)** Maximum : 2.
- **4)** Décroissante sur [2, +∞[.

- **c) 1)** [2, +∞[
- **2)**]-∞, 2]
- 6) Positif sur [2, 6]; négatif sur [6, $+\infty$ [.

- **5)** 6 d) 1) ℝ
- **2)** [0, +∞[
- **3)** Minimum: 0.
- **4)** Croissante sur $[5, +\infty[$; décroissante sur $]-\infty$, 5].

- **5)** 5
- 6) Positif sur \mathbb{R} ; négatif sur $\{5\}$.

- **2)**]-∞, 2]
- **3)** Maximum : 2.
- 4) Croissante sur $]-\infty$, 2].

- **5)** -2 f) 1) ℝ
- 6) Positif sur [-2, 2]; négatif sur $]-\infty, -2]$. **2)**]-∞, 4]
 - **3)** Maximum: 4.
- 4) Croissante sur $]-\infty$, 0]; décroissante sur $[0, +\infty[$.

- **5)** -4 et 4.
- 6) Positif sur [-4, 4]; négatif sur $]-\infty, -4] \cup [4, +\infty[$.

7. a)
$$f: 0 = 2x + 4$$

 $-4 = 2x$

b) 1)
$$(f \times g)(x) = (2x + 4)(-3x + 6)$$

= $-6x^2 + 12x - 12x + 24$
= $-6x^2 + 24$

7. a) 7.
$$0 = 2x + 4$$

 $-4 = 2x$
 $x = -2$
 $a: 0 = -3x + 6$

c)
$$f \times g$$
: $0 = -6x^2 + 24$
 $6x^2 = 24$
 $x^2 = 4$
 $x = -2$ et $x = 2$
 $f \times h$: $0 = 3x^2 - 3x - 18$
 $x = \frac{3 \pm \sqrt{9 - 4(3)(-18)}}{2(3)}$
 $x = \frac{3 \pm 15}{6}$

x = 3 et x = -2.

- 3x = 6x = 2
- h: 0 = 1.5x 4.54.5 = 1.5xx = 3
- d) Les deux zéros du produit des fonctions correspondent au zéro de chacune des fonctions impliquées dans le produit.

8. a)
$$y = -2x^2 + 4x + 6$$
 et $y = -2(x + 1)(x - 3)$.

b)
$$y = 2(x - 0.75)^2 - 0.125$$
 et $y = 2(x - 1)(x - 0.5)$.

c)
$$y = 0.5x^2 + 4x + 3.5$$
 et $y = 0.5(x + 7)(x + 1)$.

d)
$$y = x^2 - 8x + 15$$
 et $y = (x - 4)^2 - 1$.

e)
$$y = 2(x - 1)^2 - 8$$
 et $y = 2(x + 1)(x - 3)$.

f)
$$y = 3x^2 - 54x + 240$$
 et $y = 3(x - 8)(x - 10)$.

g)
$$y = x^2 - 3x - 10$$
 et $y = (x - 1.5)^2 - 12.25$.

h)
$$y = -2(x + 0.75)^2 + 3.125$$
 et $y = -2(x - 0.5)(x + 2)$.

i)
$$y = 2x^2 - 8x + 6$$
 et $y = 2(x - 2)^2 - 2$.

Vue d'ensemble (suite)

- **9.** a) Positif sur $]-\infty$, $-0.5] \cup [2, +\infty[$; négatif sur [-0.5, 2].
 - **b)** Positif sur $\left]-\infty, -\frac{5}{8}\right] \cup \left[3, +\infty\right[$; négatif sur $\left[-\frac{5}{8}, 3\right]$.
 - c) Positif sur $\left[\frac{41}{16}, +\infty\right]$; négatif sur $\left[2, \frac{41}{16}\right]$
 - **d)** Positif sur $]-\infty$, 0,5] \cup [5, $+\infty$ [; négatif sur [0,5, 5].
 - **e)** Positif sur]-∞, -225]; négatif sur [-225, 400].
 - **f)** Positif sur $]-\infty$, $\approx -9,66] \cup [\approx 4,66, +\infty[$; négatif sur $[\approx -9,66, \approx 4,66]$.
 - **g)** Positif sur $]-\infty$, -4].
 - **h)** Positif sur \mathbb{R} .
 - i) Positif sur [-43, -2, 5]; négatif sur $]-\infty, -43]$.
 - j) Positif sur $]-\infty$, $-2] \cup [-1, +\infty[$; négatif sur [-2, -1].
 - **k)** Positif sur [13, 29]; négatif sur [29, $+\infty$ [.
 - 1) Positif sur $\left] -\infty, \frac{2}{3} \right] \cup \left[\frac{3}{4}, +\infty \right[$; négatif sur $\left[\frac{2}{3}, \frac{3}{4} \right]$.

10. a)
$$y = \sqrt{x - 1} + 3$$
 b) $y = -0.5\sqrt{x + 5} + 4$ c) $y = -\sqrt{-(x + 3)} - 6$ d) $y = 2\sqrt{-(x - 35)} + 8$ e) $y = -3\sqrt{-(x + 12)} - 1$ f) $y = -2\sqrt{x + 20} - 36$

b)
$$y = -0.5\sqrt{x+5} + 4$$

c)
$$y = -\sqrt{-(x+3)} - 6$$

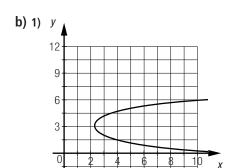
d)
$$y = 2\sqrt{-(x-35)} +$$

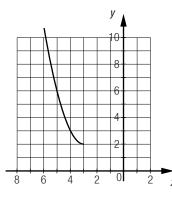
e)
$$v = -3\sqrt{-(x+12)}$$

f)
$$y = -2\sqrt{x + 20} - 36$$

1	1	a

) [х	0	1	2	3	4	5	6	7
	f(x)	15,5	8	3,5	2	3,5	8	15,5	26
ĺ	g(x)	Non défini.	Non défini.	-3	-4	≈ -4,41	≈ -4,73	-5	≈ -5,24





c) Non, car une même valeur de la variable indépendante est associée à plus d'une valeur de la variable dépendante.

2)

12. a) 1)
$$(f + g)(x) = (3x - 2) + (-2x^2 + 4x + 1)$$

= $-2x^2 + 7x - 1$

2)
$$(f - g)(x) = (3x - 2) - (-2x^2 + 4x + 1)$$

= $3x - 2 + 2x^2 - 4x - 1$
= $2x^2 - x - 3$

3)
$$f(g(x)) = 3(-2x^2 + 4x + 1) - 2$$

= $-6x^2 + 12x + 3 - 2$
= $-6x^2 + 12x + 1$

4)
$$g(f(x)) = -2(3x - 2)^2 + 4(3x - 2) + 1$$

= $-2(9x^2 - 12x + 4) + 12x - 8 + 1$
= $-18x^2 + 24x - 8 + 12x - 7$
= $-18x^2 + 36x - 15$

5)
$$h(f(x)) = -\sqrt{(3x-2)-2} - 3$$

= $-\sqrt{3x-4} - 3$

- **b) 1)** À une fonction polynomiale de degré 2.
 - 3) À une fonction polynomiale de degré 2.
 - 5) À une fonction racine carrée.

- 2) À une fonction polynomiale de degré 2.
- 4) À une fonction polynomiale de degré 2.

Vue d'ensemble (suite)

Page 133

- **13.** a) Résoudre l'équation x(5 + x) = 176. Les solutions sont x = -16 (à rejeter) et x = 11.
 - **b)** Résoudre l'équation 81 = 0.5(2x + 6)(x + 3). Les solutions sont x = -12 (à rejeter) et x = 6.
 - **c)** Résoudre l'équation 3(x 3)(x + 4) = 180. Les solutions sont x = -9 (à rejeter) et x = 8.
 - **d)** Résoudre l'équation $9(x^2 6x + 9) = 81$. Les solutions sont x = 0 et x = 6.

14. a)
$$x = -\frac{5}{3}$$
 et $x = 0$.

b)
$$x = 1$$

e)
$$x = -0.4$$
 et $x = 3$.

f)
$$x = -39$$

i)
$$x = 256,5$$

15. a)
$$1 < x < 4$$

b)
$$x \le -4$$
 et $x \ge 2$.

e)
$$x \le -7$$
 et $x \ge 5$.

f)
$$3 \le x \le 19$$

i)
$$-7.5 \le x \le 0.5$$

b)
$$x \le -4$$
 et $x \ge 2$

f)
$$3 \le x \le 19$$

$$= 0.5$$
 j) $x > 24$

16. a) 1) Domaine :
$$\mathbb{R}$$
; codomaine [3, $+\infty$ [.

4) Croissante sur
$$[1, +\infty[$$
; décroissante sur $]-\infty$, 1].

b) 1) Domaine:
$$\mathbb{R}$$
; codomaine [-30,25, + ∞ [.

4) Croissante sur
$$[2,5, +\infty[$$
; décroissante sur $]-\infty, 2,5]$.

c) 1) Domaine :]-
$$\infty$$
, -4]; codomaine]- ∞ , -11].

d) 1) Domaine :
$$\mathbb{R}$$
; codomaine $[-8, +\infty[$.

4) Croissante sur
$$[3, +\infty[$$
; décroissante sur $]-\infty$, 3].

Donc,
$$z \approx 9,22$$
 cm.

La mesure d'un côté de la base est de 3 cm.

c)
$$x = 3$$
 et $x = 4$.

d)
$$x = 27$$

$$g) \varnothing$$

h)
$$x = -2.045$$

c)
$$-1 < x < 2.5$$

d)
$$x \le -2$$
 et $x \ge 1$.

g)
$$5 \le x \le 21$$

h)
$$\varnothing$$

e) 1) Domaine : $]-\infty$, -2]; codomaine $[5, +\infty[$.

4) Décroissante sur]-∞, -2].

f) 1) Domaine: $[3, +\infty[$; codomaine $]-\infty$, 2,25].

4) Décroissante sur [3, +∞[.

q) 1) Domaine: \mathbb{R} ; codomaine [-84,5, $+\infty$ [.

4) Croissante sur $[-2,5, +\infty[$; décroissante sur $]-\infty, -2,5]$.

h) 1) Domaine :] $-\infty$, 0,75]; codomaine [-3, $+\infty$ [.

4) Décroissante sur] $-\infty$, 0,75].

2) Aucune valeur initiale.

3) Minimum : 5.

2) Aucune valeur initiale.

3) Maximum: 2,25.

2) -72

3) Minimum: -84,5.

Page 134

2) $\sqrt{3} - 3 \approx -1.27$

3) Minimum : -3.

Vue d'ensemble (suite)

17. Par la relation de Pythagore : $x^2 + 24^2 = (3x + 4)^2 \Rightarrow 8x^2 + 24x - 560 = 0$. x = -10 (à rejeter) et x = 7. L'hypoténuse mesure 25 m.

18. a) 1) $y = (x - 3.5)^2 - 7.25$

2) $x = \sqrt{7.25} + 3.5$ ou ≈ 6.19 et $x = -\sqrt{7.25} + 3.5$ ou ≈ 0.81 .

b) 1) $y = 3\sqrt{x-2} - 5$

c) 1) $y = 2\sqrt{-(x+2)} - 7$

2) $x = \frac{43}{9}$ 2) x = -14,25

d) 1) $y = 0.1(x - 1)^2 - 4$

2) $x = \sqrt{40} + 1$ ou ≈ 7.32 et $x = -\sqrt{40} + 1$ ou ≈ -5.32 .

19. a) $I = -0.00005t^2 + 0.04t$ $I = -0.00005(t - 400)^2 + 8$

L'intensité maximale du flash correspond à la valeur du paramètre k de la règle de la fonction, soit 8 candelas.

 $0 = -0.00005(t - 400)^2 + 8$ b)

> 400 = t - 400-400 = t - 400t = 800t = 0

 $160\ 000 = (t - 400)^2$

800 - 0 = 800

Le flash dure 800 millisecondes.

 $t \approx 682,84$

 $4 = -0.00005(t - 400)^2 + 8$ c)

 $80\ 000 = (t - 400)^2$ $\sqrt{80\ 000} = t - 400$ $-\sqrt{80\ 000} = t - 400$

Ce flash atteint la moitié de son intensité maximale à environ 117,16 millisecondes et à 682,84 millisecondes.

 $t \approx 117.16$

d) $6 < -0.00005(t - 400)^2 + 8$ $40\ 000 < (t - 400)^2$

200 > t - 400-200 < t - 400200 < t600 > t

L'intensité du flash est supérieure à 6 candelas pendant [200, 600[millisecondes, c'est-à-dire pendant environ 400 millisecondes.

Vue d'ensemble (suite)

Page 135

20. a) La règle est $y = -28(x - 0.5)^2 + 8$, où y est la hauteur du ballon (en m) et x, le temps (en s).

b) La hauteur maximale est de 8 m.

c)
$$0 = -28(x - 0.5)^{2} + 8$$

$$\frac{2}{7} = (x - 0.5)^{2}$$

$$\sqrt{\frac{2}{7}} = x - 0.5$$

$$x \approx 1.03$$

$$\sqrt{\frac{2}{7}} = x - 0.5$$

$$\sqrt{\frac{2}{7}} = x - 0.5$$

$$x \approx -0.0345 \text{ (à rejeter)}$$

La gymnaste rattrape le ballon environ à 1,03 s.

d)
$$4 < -28(x - 0.5)^{2} + 8$$

$$\frac{1}{7} > (x - 0.5)^{2}$$

$$\sqrt{\frac{1}{7}} > x - 0.5$$

$$x < \approx 0.88$$

$$0.88 - 0.12 = 0.76$$

La hauteur du ballon est supérieure à 4 m pendant environ 0,76 s.

- **21.** a) Résoudre l'inéquation $(3x 2)^2 < (2x 1)^2$. $x \in]0,6,1[$
 - **b)** Résoudre l'inéquation $(3x-2)^2 > (2x-1)^2$. Tenir compte du fait que les valeurs inférieures ou égales à 0,5 doivent être rejetées. $x \in]0,5,0,6[\cup [1,+\infty[$
 - c) Résoudre l'équation $2(3x-2)^2=(2x-1)^2$. $x\approx 0,61$ (à rejeter) et $x\approx 0,82$.

Vue d'ensemble (suite)

Page 136

- **22. a)** Règle de la fonction associée à la phase ① : $y = -3(x 3.5)^2 + 36.75$. La profondeur maximale atteinte est de 36.75 m.
 - **b)** $18 = -3(x 3.5)^2 + 36.75$ x = 6

La descente débute à 3,5 min et se termine à 6 min.

 $6 - 3.5 = 2.5 \, \text{min}$

La descente dure donc 2,5 min.

c) Règle de la fonction associée à la phase $3: y = -0.96(x - 15)^2 + 42$. On cherche x quand y = 0. $0 = -0.96(x - 15)^2 + 42$ $x \approx 21.61$

La durée totale de la plongée est environ de 21,61 min.

d)
$$-3(x - 3,5)^{2} + 36,75 > 35$$

$$(x - 3,5)^{2} < \frac{7}{12}$$

$$\sqrt{\frac{7}{12}} > x - 3,5$$

$$x < \approx 4,26$$

$$-0,96(x - 15)^{2} + 42 > 35$$

$$(x - 15)^{2} < \frac{175}{24}$$

$$\sqrt{\frac{175}{24}} > x - 15$$

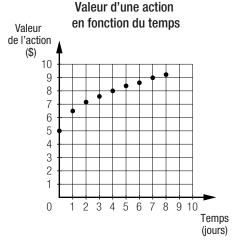
$$x < \approx 17.7$$

$$-\sqrt{\frac{175}{24}} < x - 15$$

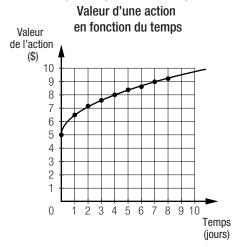
$$x > \approx 12.3$$

Les moments où le plongeur se trouve à une profondeur inférieure à 35 m sont] \approx 2,74, \approx 4,26[min et] \approx 12,3, \approx 17,7[min.

23. a)



b) Plusieurs réponses possibles. Exemple :



- c) À une fonction racine carrée.
- **d)** Plusieurs réponses possibles. Exemple : $y = 1,5\sqrt{x} + 5$
- e) Plusieurs réponses possibles. Exemple :

$$12 = 1,5\sqrt{x} + 5$$

$$7 = 1,5\sqrt{x}$$

$$\frac{14}{3} = \sqrt{x}$$

$$x \approx 21,\overline{7}$$

La valeur de l'action sera de 12 \$ au cours de la 22e journée.

Vue d'ensemble (suite)

Page 137

24. Plusieurs réponses possibles. Exemple :

Quelle est la règle de la fonction associée à cette situation ? $y = -0.02(x - 22)^2 + 22$, où y représente l'énergie dépensée (en kJ) et x, le temps (en s).

Quelle est l'énergie dépensée à 43 s? L'énergie dépensée est environ de 13,18 kJ.

25. a) La règle de la fonction est $y = -2\sqrt{x+9} + 27$, où y est le volume (en millions de m³) et x, le temps (en années).

b)
$$0 = -2\sqrt{x+9} + 27$$

 $-27 = -2\sqrt{x+9}$
 $13.5 = \sqrt{x+9}$
 $182.25 = x+9$
 $x = 173.25$

Le glacier sera complètement fondu dans 173,25 ans.

- c) Résoudre l'équation $-2\sqrt{x+9} + 27 = 11$. Le volume du glacier sera de 11 millions de mètres cubes dans 55 ans.
- **d)** Résoudre l'inéquation $-2\sqrt{x+9} + 27 > 7$. Le volume du glacier sera supérieur à 7 millions de mètres cubes pendant encore 91 ans.

Vue d'ensemble (suite)

Page 138

26. a) La règle associée à la fonction g est $g(x) = -0.5(x - 9)^2 + 8$. On doit trouver les zéros de cette fonction.

$$0 = -0.5(x - 9)^{2} + 8$$

$$16 = (x - 9)^{2}$$

$$4 = x - 9$$

$$x = 13$$

$$-4 = x - 9$$

$$x = 5$$

La règle associée à la fonction h est $h(x) = 2\sqrt{x-5}$.

La règle associée à la fonction f est $f(x) = 2\sqrt{-(x-13)}$.

On calcule le point d'intersection entre les fonctions *h* et *f*.

$$2\sqrt{x-5} = 2\sqrt{-(x-13)}$$

$$x - 5 = -(x - 13)$$

$$x - 5 = -x + 13$$

$$2x = 18$$

$$x = 9$$

$$h(x) = 2\sqrt{9-5} = 4$$

Les coordonnées du point d'intersection sont (9, 4).

b)
$$f(x) \le 3$$

$$2\sqrt{-(x-13)} \le 3$$

$$-(x-13) \le 2.25$$

$$x - 13 \ge -2,25$$

$$x \ge 10,75$$

Donc, $f(x) \le 3$ sur l'intervalle [10,75, 13].

$$g(x) \le 3$$

$$-0.5(x - 9)^2 + 8 \le 3$$

$$5(x-9)^2+8 \le 3$$
$$(x-9)^2 \ge 10$$

$$\sqrt{10} = x - 9$$

$$0 = x - 9$$
 $-\sqrt{10} = x - 9$
 $x \approx 12,16$ $x \approx 5,84$

Donc, $q(x) \le 3$ sur l'intervalle $]-\infty$, ≈ 5.84] \cup $[\approx 12.16, +\infty[$.

$$h(x) \leq 3$$

$$2\sqrt{x-5} \le 3$$

$$x - 5 \le 2.25$$

$$x \le 7.25$$

Donc, $h(x) \le 3$ sur l'intervalle [5, 7,25].

27. La règle de la fonction est $y = -2(x - 3)^2 + 90$, où y représente l'humidité (en %) et x, le temps (en h).

$$-2(x-3)^2+90>85$$

$$(x-3)^2 < 2.5$$

$$\sqrt{2.5} = x - 3$$

$$-\sqrt{2,5} = x - 3$$

$$x \approx 4,58$$

$$\chi \approx 1.4$$

$$4.58 - 1.42 = 3.16$$

Cette salle d'entreposage ne respecte pas la norme de qualité, car l'humidité est supérieure à 85 % pendant environ 3,16 h.

28. Valeur de $x : \frac{0+4}{2} = 2$.

Valeur de *y* : $\frac{0+8}{2} = 4$.

a)
$$f(x) = a(x-2)^2 + 8$$

$$4 = a(4-2)^2 + 8$$

$$f(x) = -(x-2)^2 + 8$$

$$f(x) = -x^2 + 2x + 4$$

b)
$$q(x) = a(x-2)^2$$

$$4 = a(4 - 2)^2$$

$$a = 1$$

$$g(x) = (x-2)^2$$

$$q(x) = x^2 - 4x + 4$$

Vue d'ensemble (suite)

Page 139

29. a) La règle de la fonction est $y = -6.25(x - 5)^2 + 100$, où y représente l'efficacité (en %) et x, le temps (en h).

- **b)** Résoudre l'inéquation $-6,25(x-5)^2 + 100 > 93,75$.
 - 4 6
- c) Résoudre l'inéquation $-6,25(x-5)^2+100 \ge 43,75$. La douleur est inexistante de la 2^e à la 8^e heure.
- **30.** a) L'avion roule sur la piste pendant 8 s.
 - **b)** $A = 460\sqrt{36 8}$ ≈ 2434.09

L'altitude de l'avion est environ de 2434,09 m.

- c) $460\sqrt{t-8} = 6900$ t-8 = 225
 - t 8 = 225t = 233

L'avion vole à une altitude de 6900 m à 233 s.

- **d)** $460\sqrt{t-8} < 1500$
 - t 8 < 10,63
 - *t* < 18,63

L'altitude de l'avion est inférieure à 1500 m pendant environ 18,63 s.

31. a) Si y représente la masse (en kg) et x, l'âge (en années), voici la règle de chacune des courbes.

Courbe de 95 % : $y = 8\sqrt{x} + 5$

Courbe de 75 % : $y = 7\sqrt{x} + 4$

Courbe de 50 % : $v = 6\sqrt{x} + 3$

Courbe de 5 % : $y = 5\sqrt{x} + 2$

- **b) 1)** Oui, car en résolvant l'équation $y = 6\sqrt{3.5} + 3$, la solution est 14,22 kg. Cela signifie que 50 % des enfants âgés de 3 ans et demi ont une masse inférieure ou égale à 14,22 kg. Par conséquent, plus de 50 % des enfants ont une masse inférieure à 14,5 kg.
 - 2) Oui, car en résolvant l'équation $y = 7\sqrt{3} + 4$, la solution est 16,12 kg. Cela signifie que 75 % des enfants âgés de 3 ans ont une masse inférieure ou égale à 16,12 kg. Par conséquent, plus de 75 % des enfants ont une masse inférieure à 17 kg.
 - 3) Non, car en résolvant l'équation $y = 8\sqrt{2} + 5$, la solution est 16,31 kg. Cela signifie que 95 % des enfants âgés de 2 ans ont une masse inférieure ou égale à 16,31 kg. Par conséquent, moins de 95 % des enfants ont une masse inférieure à 16 kg.

Banque de problèmes

Page 140

1. Déterminer les dimensions de la base de chacun des conteneurs afin de calculer leur aire totale.

Conteneur de type A	Conteneur de type B	
Le périmètre est de 32 m, alors les dimensions de la base sont de x m sur (16 $-x$) m.	Le périmètre est de 24 m, alors les dimensions de la base sont de x m sur (12 $-x$) m.	
Résoudre l'équation $2x(16 - x) = 56$.	Résoudre l'équation $2x(12 - x) = 40$.	
Les solutions sont $x = 2$ et $x = 14$.	Les solutions sont $x = 2$ et $x = 10$.	
Les dimensions de la base sont de 2 m sur 14 m.	Les dimensions de la base sont de 2 m sur 10 m.	
L'aire totale du conteneur est de 120 m².	L'aire totale du conteneur est de 88 m².	
L'aire totale des 15 conteneurs est de 1800 m².	L'aire totale des 12 conteneurs est de 1056 m^2 .	

L'aire totale à repeindre est de 2856 m². 357 L de peinture seront nécessaires, au coût, avant les taxes, de 3927 \$. Pour des taxes en vigueur de 5 % pour la TPS et de 7,5 % pour la TVQ, le coût total de la peinture est de 4432,60 \$.

2. Établir la règle de la fonction qui correspond à la situation.

Déterminer les valeurs des paramètres a et k à l'aide d'un système d'équations à deux variables.

- (1) $1 = a(-10)^2 + k$
- (2) $2.6 = a(4 10)^2 + k$

La règle de cette fonction est $y = -0.025(x - 10)^2 + 3.5$, où y représente l'altitude (en km) et x, le temps (en s). Résoudre l'inéquation $-0.025(x - 10)^2 + 3.5 > 3$.

L'intervalle de temps pendant lequel la fusée vole à une altitude supérieure à 3000 m est environ de 8,94 s. La fusée ne respecte donc pas les exigences.

Banque de problèmes (suite)

Page 141

3. Plusieurs réponses possibles. Exemple :

Établir la règle de la fonction associée à chacune des situations si y représente la vitesse du son (en m/s) et x, la température de l'eau (en $^{\circ}$ C).

Eau douce	Eau salée	
$y = 18\sqrt{x} + 1400$	$y = 22\sqrt{x+2} + 1440$	

Déterminer la vitesse du son dans l'eau douce et celle du son

dans l'eau salée à une température de 50 °C.

Eau douce : ≈ 1527,28 m/s

Eau salée : ≈ 1598,64 m/s

L'écart entre les vitesses du son est environ de 71,36 m/s, ce qui réfute l'affirmation de ce chercheur.

4. Établir la règle de la fonction qui correspond à la courbe en orange. Déterminer les valeurs des paramètres a et h à l'aide d'un système d'équations à deux variables.

(1)
$$6 = a\sqrt{34 - h} + 5$$

(2)
$$7 = a\sqrt{46 - h} + 5$$

La règle de cette fonction est donc $y = 0.5\sqrt{x - 30} + 5$.

Établir la règle de la fonction qui correspond à la courbe en vert.

 $y = 0.05(x - 20)^2$, où y est la hauteur (en m) et x, le temps (en s).

La valeur initiale de cette fonction correspond à la hauteur de l'aigle pêcheur au début de la manœuvre. L'aigle pêcheur a donc amorcé sa manœuvre à une hauteur de 20 m.

Banque de problèmes (suite)

Page 142

5. Établir la règle de chacune des fonctions associées à la variation de la valeur de chacune des voitures.

Voiture A : $y_1 = 2\sqrt{x} + 1.5$. Voiture B : $y_2 = 1.25\sqrt{x} + 3$.

La valeur totale des voitures en fonction du temps est déterminée par l'addition des règles.

$$y_1 + y_2 = 3,25\sqrt{x} + 4,5$$

La valeur totale initiale des voitures est de 4500 \$.

Résoudre cette équation pour une valeur de 18 000\$.

$$18 = 3.25\sqrt{x} + 4.5$$

Le collectionneur devrait vendre ses deux voitures après environ 17,25 ans.

6. Résoudre les équations ci-dessous afin de déterminer les dimensions minimales et maximales de la piscine.

(x +	12)(<i>x</i>	+ 3) = 90
------	---------------	-----	--------

Les solutions sont -18 (à rejeter) et 3.

Les dimensions minimales de la piscine sont de 6 m sur 10 m. Avec le trottoir, les dimensions sont de 16 m sur 20 m. (x + 12)(x + 3) = 136

Les solutions sont -20 (à rejeter) et 5. Les dimensions maximales de la piscine sont de 8 m sur 12 m. Avec le trottoir, les dimensions sont de 18 m sur 22 m.

Les dimensions minimales de la piscine sont supérieures aux dimensions du terrain. Il est donc impossible de construire cette piscine sur ce terrain.

Banque de problèmes (suite)

Page 143

7. Établir l'équation qui correspond au volume d'une rondelle et la résoudre.

$$2\pi(x-2)^{2}-2\pi(0,5x-1)^{2}=400\pi$$

$$0.75x^2 - 3x + 3 = 200$$

Les solutions sont $x \approx -14,33$ (à rejeter) et $x \approx 18,33$.

Le diamètre d'une rondelle est environ de 32,66 cm.

8. La phase du lancement se termine à 4 s.

$$y = -5(4)^2 + 40(4) = 80$$

Donc à 4 s, la pièce pyrotechnique se trouve à 80 m de hauteur.

Alors, la courbe associée à la phase de l'explosion passe par le point (4, 80).

Trouver la valeur de k₁.

$$y = 8\sqrt{x - 4} + k_1$$

80 = $8\sqrt{4 - 4} + k_1$
 $k_1 = 80$

Règle associée à la phase de l'explosion : $y = 8\sqrt{x-4} + 80$

La phase de l'explosion se termine à 13 s.

$$y = 8\sqrt{13 - 4} + 80$$

$$y = 104$$

Donc à 13 s, la pièce pyrotechnique se trouve à 104 m de hauteur.

Alors, la courbe associée à la phase de la descente passe par le point (13, 104).

Trouver la valeur de k_2 .

$$y = -5(x - 13)^2 + k_2$$

 $104 = -5(13 - 13)^2 + k_2$
 $k_2 = 104$

Règle associée à la phase de la descente : $y = -5(x - 13)^2 + 104$

Résoudre les trois inéquations suivantes en tenant compte de l'intervalle de temps de chacune des phases.

$-5x^2 + 40x > 60$	$8\sqrt{x-4} + 80 > 60$	$-5(x-13)^2+104>60$
Solution :]2, 4[s	Solution :]4, 13[s	Solution :]13, ≈ 15,97[s

La pièce pyrotechnique se trouve à une hauteur supérieure à 60 m durant environ 13,97 s. Le pyrotechnicien n'a donc pas raison.